NATIONAL TECHNICAL UNIVERSITY OF UKRAINE «Igor Sikorsky Kyiv Polytechnic Institute» Educational and Scientific Institute of Mechanical Engineering Department of manufacturing engineering

APPROVEDENO

Methodical Council KPI them. Igor Sikorsky protocol No 5 dd 23.02.2023

F – CATALOGUE ELECTIVE ACADEMIC DISCIPLINES

for applicants for a bachelor's degree speciality: 131 - Applied Mechanics educational and professional program: Mechanical engineering technologies for the 2023/2024 academic year

APPROVED:

Academic Council of NN MMI KPI them. Igor Sikorsky protocol No 6 dd 30.01.2023 According to Section X of Article 62 of the Law of Ukraine "On Higher Education" (No. 1556-VII of 01.07.2014), Elective disciplines are disciplines of free choice of students for a certain level of higher education, aimed at ensuring general and special (professional) competencies in the specialty. The volume of elective disciplines is at least 25% of the total number of ECTS credits provided for this level of education.

Students choose elective disciplines from the departmental F-Catalog in accordance with the "Regulations on the realization of the right to free choice of academic disciplines by applicants for higher education KPI. Igor Sikorsky".

The catalogue contains an annotated list of disciplines that are offered for selection by students of the first (bachelor's) level of VO according to the curriculum for the next academic year.

The choice of disciplines from the F-Catalog is carried out through the specialized information system of the University "my.kpi.ua". Generalized information is used to plan the educational process.

- **students of the II year** choose disciplines for the third year of preparation;
- **III year students** choose disciplines for the **IV** year of preparation;
- I and II year students enrolled in the abbreviated Bachelor's program choose the discipline according to their curriculum.

Some disciplines are offered for students of certain faculties to study. For some disciplines, there is a limit in the number of students to whom it can be offered. In these cases, after the name of the discipline, the target audience (for students ...) or the number of places (up to ... students). In the process of choosing a discipline, please take these features into account.

All aspects of the realization of the right of students to choose disciplines can be found in the "Regulations on the procedure for exercising the right to free choice of academic disciplines by applicants for higher education KPI. Igor Sikorsky" https://osvita.kpi.ua/node/185

If it is impossible to form study groups to study a certain discipline of the normative number, students are given the opportunity to make a second choice by joining the already formed study groups.

It is not allowed to change the selected disciplines after the start of the academic semester in which they are taught.

$C \cap$	nte	nt
cυ	nte	ΠU

K1.1 :: Machine graphics	5
K1.2 :: Basics of three-dimensional modeling	6
K1.3 :: Polygonal modeling	7
K2.1 :: Theory of cutting	8
K2.2 :: Forming surfaces by cutting	9
K2.3 :: Physics of cutting processes	10
K3.1 :: Design and production of blanks	11
K3.2 :: Processing of composite and special materials	12
K3.3 :: Procurement technologies	13
K4.1 :: Design and manufacturing technologies of parts from sheet materials	14
K4.2 :: Computer-aided design	15
K4.3 :: Fundamentals of macro programming	16
K5.1 :: General structure of aircraft and their units	17
K5.2 :: Design features of high-tech products of machine-building production	18
K5.3 :: Design and design of aircraft	19
K6.1 :: Microprocessor technology	20
K6.2 :: Basics of automation hardware	21
K6.3 :: Fundamentals of microcontroller technology	22
K7.1 :: Cutting tools	23
K7.2 :: Cutting equioment	24
K7.3 :: Means of forming machine parts from non-metallic materials	25
K8.1 :: Fundamentals of scientific research	26
K8.2 :: Discrete Mathematics	27
K8.3 :: Basics of experimental research	28
K9.1 :: Heat treatment and coatings	29
K9.2 :: Electrophysical and electrochemical processing methods	30
K9.3 :: Physical Foundations of Laser Material Processing	31
K10.1 :: Robotization of technological processes	32
K10.2 :: System analysis	33
K10.3 :: Control systems for technological equipment	34
K11.1 :: Assembly processes in mechanical engineering	35
K11.2 :: Automation of technological processes	36
K11.3 :: Equipment for automated production	37
K12.1 :: CNC machines and equipment	38
K12.2 :: Technological equipment in aircraft industry	39
K12.3 :: Automated production equipment	40

K13.1 :: Fundamentals of algorithmic programming of CAD systems	41
K13.2 :: Designing Dies and Molds	42
K13.3 :: Rapid prototyping technologies	43
K14.1 :: Theoretical foundations of surface formation	44
K14.2 :: Gear manufacturing technology	45
K14.3 :: Tool production technology	46

Educational component 1 F-Catalog

Discipline	K1.1 :: Machine graphics
VO level	First (bachelor's)
Course, semester	3rd year 5 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	Knowledge gained in the study of the disciplines "Informatics", "Linear algebra and
the beginning of the	analytical geometry"
study	
What will be studied	SolidWorks three-dimensional modeling system
Why it is	The student will get acquainted with the basic means and mathematical apparatus of three-
interesting/necessary	dimensional graphics and its use in mechanical engineering technology; learn how to create
to study	3D models of engineering objects and prepare engineering drawings using 3D CAD system
	SolidWorks
What you can learn	The following issues are considered: setting up the SolidWorks interface; work with
(learning outcomes)	sketches; tools for creating solids; basics of surface modeling; development of drawings of
	parts and assembly products; design of sheet metal parts; solving problems of theoretical
	mechanics and material resistance
How can you use the	To obtain fundamental knowledge, on the basis of which it is possible to successfully study
acquired knowledge	the disciplines of design and technological direction, as well as to master new knowledge in
and skills	the field of computer graphics and geometric modeling necessary in production and design
(competence)	activities.
Information support	A set of documentation (presentations / pdf-instructions for the user) and video materials, a
	computer class for practical work.
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component 1 F-Catalog

Discipline	K1.2 :: Basics of three-dimensional modeling
VO level	First (bachelor's)
Course, semester	3rd year 5 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	Knowledge gained in the study of the disciplines "Informatics", "Linear algebra and
the beginning of the	analytical geometry"
study	
What will be studied	Three-dimensional modeling system CATIA V5 / V6. Modules: Part, Assembly, Drawing,
What whi be buarda	Generative Shape Design, Sheet Metal, Structure Design
Why it is	The student will learn the basic concepts, tools and approaches to work in the computer-
interesting/necessary	aided design system CATIA, which is a powerful tool for creating three-dimensional models
to study	of parts.
What you can learn	Study of the basic theoretical foundations on which machine graphics are based: geometric
(learning outcomes)	modeling (types of models, methods of constructing objects, internal representation of
(learning outcomes)	geometric models, matrix transformations); mathematical methods used for geometric
	modeling (approximation methods, basic concepts of graph theory), obtaining information
	about the distribution of machine graphics and its place in automatic design systems,
	existing systems and obtaining skills in working with one of the most common graphic
	editors for technical purposes
How can you use the	Create sketches and three-dimensional models of parts and assemblies, making the most of
acquired knowledge	the capabilities of the CATIA toolkit; create drawings and photorealistic images of models
and skills	in semi-automatic mode; model sheet metal structures, obtain their scans; import/export the
(competence)	geometry of parts; use surface modeling tools
Information support	A set of documentation (presentations / pdf-instructions for the user) and video materials, a
	computer class for practical work.
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component 1 F-Catalog

Discipline	K1.3 :: Polygonal modeling
VO level	First (bachelor's)
Course, semester	3rd year 5 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	Knowledge gained in the study of the disciplines "Informatics", "Linear algebra and
the beginning of the	analytical geometry"
study	
What will be studied	2D and 3D modeling modules of the ArtCAM system
Why it is	ArtCAM makes it possible to create relief surfaces based on two-dimensional vector or
interesting/necessary	raster graphic images, even a photograph of a sample can be taken as a basis. ArtCAM
to study	contains tools for modeling complex shapes and combining preserved reliefs.
What you can learn	Creation of 2D and 3D images in ArtCAM; Raster, vector, and emboss images; Creating a
(learning outcomes)	raster image; Creation of vectors; Creation of three-dimensional relief; Work with text on
	the example of constructing letters of constant height; Control of the window of three-
	dimensional view; Three-dimensional template; Color binding; Smoothing of the relief;
	Construction of curvilinear profiles; Rotation; Rotate; Combination of reliefs; Extrude;
	Working with textures in ArtCAM
How can you use the	Building models using three-dimensional templates; Construction of reliefs on curvilinear
acquired knowledge	profiles; Creating a texture on the relief; Creating complex reliefs by bonding colors;
and skills	Interactive relief editing; Modeling of jewelry; Create a relief from a scanned picture
(competence)	
Information support	Syllabus of the discipline, control tasks, textbooks, presentations of lectures
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component of the 2 F-Catalog

Discipline	K2.1 :: Theory of cutting
VO level	First (bachelor's)
Course, semester	3rd year 5 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	For successful study of the discipline, it is necessary to have competencies in the theory of
the beginning of the	deformation of structural materials in conditions of complex power loads, as well as
study	knowledge of the structure of modern structural materials and the laws of their change under
	the influence of power and thermal loads.
What will be studied	Modern technological processes of machining machine parts in the world engineering
	industry are based on the preferential use of various types of cutting with blade and abrasive
	cutting tools.
Why it is	The first part of the discipline studies the most important physical laws of interaction of the
interesting/necessary	cutting tool with the surfaces of the workpiece being processed and the technological
to study	features of the implementation of modern types of cutting, which include the most universal
	types of cutting: first of all, the theory of turning, axial processing, milling and other types
	of blade cutting.
What you can learn	In the second part of the discipline, the theory of abrasive processing and all modern types
(learning outcomes)	of abrasive processing are studied, which provide surface treatment of various geometric
	shapes and high quality characteristics of the treated surface
How can you use the	The competencies that are acquired after studying the discipline are basic and necessary for
acquired knowledge	the successful further study of technological disciplines, which, together with this discipline,
and skills	form the basis of the qualification level of the bachelor.
(competence)	
Information support	Syllabus of the discipline, control tasks, textbooks, presentations of lectures
Form of classes	Lectures, practical work, laboratory classes
Semester control	Passed

Educational component of the 2 F-Catalog

Discipline	K2.2 :: Forming surfaces by cutting
VO level	First (bachelor's)
Course, semester	3rd year 5 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	To successfully study the discipline, it is necessary to have the competencies of forming
the beginning of the	basic geometric shapes, which are used to represent various designs of parts of modern
study	engineering, as well as to have knowledge of the physical laws of contact interaction of
	solids in the process of forming the surfaces of machine parts.
What will be studied	The basic laws of the formation of a kinematic scheme of interaction between the workpiece
	and the tool, which can ensure the formation of a given geometric shape of a set of surfaces.
Why it is	The main schemes of forming surfaces that are effective for various technical and
interesting/necessary	organizational conditions of production and groups of modern machine tools: lathe
to study	machines, planing and extended machines, drilling, milling and grinding.
What you can learn	Features of kinematic shaping schemes on modern CNC machines and multipurpose
(learning outcomes)	machines.
How can you use the	Determination of the impact on the formation processes by cutting power and thermal
acquired knowledge	factors.
and skills	Determination of the main physical and technological factors that affect the characteristics
(competence)	of the surface quality of the workpiece and the duration of the laborcapacity of the main
	cutting tools used for forming by cutting.
Information support	Syllabus of the discipline, control tasks, textbooks, presentations of lectures
Form of classes	Lectures, practical work, laboratory classes
Semester control	Passed

Educational component of the 2 F-Catalog

Discipline	K2.3 :: Physics of cutting processes
VO level	First (bachelor's)
Course, semester	3rd year 5 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	To study the discipline, students must have a thorough knowledge of the following
the beginning of the	courses Technology of structural materials and materials science; Engineering and computer
study	graphics; Mechanics of materials and structures
What will be studied	determination of rational cutting modes to obtain a given product quality; determination of
	cutting tools, machine tools and equipment, taking into account the regularity of the cutting
	process; increasing the performance of the cutting tool taking into account the physical
	phenomena that are formed during the cutting process.
Why it is	The task of studying the discipline is that the student should know:
interesting/necessary	main achievements in the field of cutting theory and special molding processes; materials
to study	that are used in the manufacture of the cutting part of the cutting tool; physical phenomena
	during cutting metals and the basic regularities of the processes of elastic-plastic
	deformation of the layer, which is cut off during its transformation into chips; the main
	features of cutting dynamics; Thermal phenomena during metal cutting
What you can learn	perform calculations of cutting forces and power; calculate cutting modes for different types
(learning outcomes)	of material processing by cutting from the conditions of rational operation of tools; be able
	to choose a lubricant and coolant for different types of machining; acquire the skills of
	conducting experimental research, and processing and analyzing the obtained data
How can you use the	The purpose of the discipline is to prepare the future design engineer in the field of
acquired knowledge and skills	metalworking, cutting materials, justification of rational cutting modes, design features, adjustment and use of metalworking machines in the design and manufacture of machine
(competence)	parts
	•
Information support	Syllabus of the discipline, lecture notes, tasks for execution
	practical and laboratory work.
Form of classes	Lectures, practical work, laboratory classes
Semester control	Passed

Educational component 3 of the F-Catalog

Discipline	K3.1 :: Design and production of blanks
VO level	First (bachelor's)
Course, semester	3rd year 5 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for the beginning of the study	To study the discipline, students must have a thorough knowledge of the following courses Technology of structural materials and materials science; Engineering and computer graphics; Mechanics of materials and structures
What will be studied	Study: development of technological design of cast or stamped blanks; determination of the economic efficiency of the use of one or another method of manufacturing the workpiece; development of design documentation for the drawing of the part during the technological processing of the elements of the form and casting and equipping the stamped workpiece; performing engineering calculations of structural elements of blanks; basic methods of calculation and design of cast and stamped blanks.
Why it is interesting/necessary to study	The discipline is necessary to study the following disciplines: Cutting materials -1, 2. Forming surfaces by cutting. Engineering technology -1.2. Technological equipment -1.2. Equipment of machining workshops. Technological equipment in aircraft manufacturing. Robotization of technological processes. Functional-cost analysis of structures. Assembly processes in mechanical engineering.
What you can learn (learning outcomes)	Know the basic requirements (structural, technological and operational) for cast parts and castings, as for workpieces of parts and stamped blanks; properties of casting alloys (physico-chemical, casting, special) and steels and the basic principles of their choice for the production of blanks;
How can you use the acquired knowledge and skills (competence)	Be able to analyze the manufacturability of cast casting and stamped blanks; correctly assign the planes of the opok connector when receiving castings and stamps for stamped blanks according to the drawing of the part to select, calculate and assign accuracy standards, allowances for machining, molding and stamping bows); independently work with literature, technological documentation and standards, determine the type of production, the complexity of the workpiece and processing allowances; use computer media.
Information support	Literature: basic and additional; resources of information networks "Internet" for the study of the discipline.
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component 3 of the F-Catalog

Discipline	K3.2 :: Processing of composite and special materials
VO level	First (bachelor's)
Course, semester	3rd year 5 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for the beginning of the study	To study the discipline, students must have a thorough knowledge of the following courses Technology of structural materials and materials science; Engineering and computer graphics; Mechanics of materials and structures
What will be studied	Study: the main types of modern components of composite materials (KM), special materials (CM), their combination; physico-chemical processes, obtaining KM and manufacturing products from them, processing KM and CM on metal-cutting equipment.
Why it is	The discipline is necessary to study the following disciplines: Cutting materials -2. Forming
interesting/necessary to study	surfaces by cutting. Design and production of blanks. Equipment of machining workshops. Technological equipment in aircraft manufacturing. Robotization of technological processes.
•	Functional-cost analysis of structures. Assembly processes in mechanical engineering.
What you can learn	Know the types and characteristics of modern KM and special materials SM; trends and
(learning outcomes)	directions of their development, applications in aviation and space technology, in mechanical engineering.
How can you use the	Be able to put into practice knowledge about modern KM and CM, the processes of
acquired knowledge	obtaining them, analysis of their structures. Apply the knowledge gained about modern KM
and skills	and CM for the selection of materials in specified operating conditions, the necessary
(competence)	reliability, manufacturability, efficiency, durability, environmental consequences of their use
	in the design of technological processes. Be able to use technical means of measurement and
	control for these materials and the processes of their production and the necessary
	production equipment.
Information support	Literature: basic and additional; resources of information networks "Internet" for the study
	of the discipline.
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component 3 of the F-Catalog

Discipline	K3.3 :: Procurement technologies
VO level	First (bachelor's)
Course, semester	3rd year 5 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	To study the discipline, students must have a thorough knowledge of the following
the beginning of the	courses Technology of structural materials and materials science; Engineering and computer
study	graphics; Mechanics of materials and structures
What will be studied	The subject of the discipline are the basic rules for designing machine parts blanks, as well
	as methods and methods of their manufacture.
Why it is	Mastering the principles of modern progressive methods and methods of manufacturing
interesting/necessary	machine parts blanks, design methods, implementation of resource-saving, low-waste and
to study	waste-free technological processes, selection of equipment and equipment for their
	production
What you can learn	- according to the specified initial data and the drawing of the part, choose a rational method
(learning outcomes)	and method of manufacturing the workpiece;
	- calculate the size of the workpiece;
	- choose the permissible deviations for the manufacture of the workpiece;
	- assign technical requirements for manufacturing;
	- draw the workpiece;
	- make a route of the technological process of manufacturing the workpiece;
How can you use the	preparation of students for the implementation of sections related to the design of the
acquired knowledge	workpiece details in the course design in the discipline "Technology of Mechanical
and skills	Engineering" and the thesis; increasing the level of engineering training of students;
(competence)	instilling in students the skills of design design work; training and development of students
	conducting scientific, economic analysis in making decisions related to the design of blanks
	of machine parts
Information support	Literature: basic and additional; resources of information networks "Internet" for the study
	of the discipline.
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component 4 F-Catalog

Discipline	K4.1 :: Design and manufacturing technologies of parts from
	sheet materials
VO level	First (bachelor's)
Course, semester	3rd year 6 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of teaching	Ukrainian
Pulpit	Mechanical engineering technologies
Requirements for	Knowledge of CAD systems (SolidWorks) at the initial level, for the full development of the
the beginning of the	discipline in the future
study	
What will be studied	This course will study:
what will be studied	- Basic principles of construction of parts from sheet material by methods of bending and
	extraction.
	- Research on strength, fatigue, dynamics of parts. With the possibility of their further
	modernization to achieve the best modeling result.
	- Development of drawings according to different standards (GOST, ISO)
	- The study of various kinds of measuring to olls for sheet material.
	- Development of equipment for bending parts.
	Development of the technological process of processing parts using bending and exhaust
	methods
Why it is	In the process of learning, students will be able to learn new methods of constructing three-
interesting/necessary	dimensional parts, analyze parts and see in real time how this or that part will behave under
to study	load and in dynamics.
·	Methods for constructing composite materials will be considered.
What you can learn	According to the results of this course, students will be able to fully master the modeling of
(learning outcomes)	complex three-dimensional parts, which are built by bending and extraction, to fully learn all
	the subtleties of constructing drawings that they will need in the future. And to master the
	construction of a full-fledged technological process for industries that are whitewashed on
	the methods of bending and extracting parts.
How can you use the	The acquired knowledge of students at the end of this course will be aimed at designing
acquired knowledge	parts by bending and extracting, and designing a technological process that they can use in
and skills	the future.
(competence)	
Information support	Syllabus of the discipline, control tasks, textbooks, presentations of lectures
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component 4 F-Catalog

the beginning of the studydiscipline in the future.What will be studiedThis course will study: • Basic principles of construction of parts and assemblies. • Development of drawings according to different standards (GOST, ISO) • The study of various kinds of measuring tools. • Study of the methodology for constructing gears, sprocket pulleys and their assemblies the Gerteg software module • Study of the module for CAE calculations SolidWorks Simulation. • Study of the module for gas and hydrodynamic calculations • SolidWorks Flow Simulation. • Design of complex parts by surface modeling methods. The basic principles of work in the PDM system are consideredWhy it is interesting/necessary to studyIn the process of learning, students will be able to learn new methods of constructing three dimensional parts, analyze parts and see in real time how this or that part will behave unde load and in dynamics. The methods of work of a group of students on one project will be considered.What you can learn (learning outcomes)According to the results of this course, students will be able to fully master the modeling o complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future.How can you use the acquired knowledge and skills (competence)The caquired knowledge of students at the end of this course will be aimed at designing parts in the future.Information supportLecture notes, a computer class for laboratory work, a laboratory for practical skills in using	Discipline	K4.2 :: Computer-aided design
Volume, and distribution of hours of classroom and independent work 4 ECTS credits / 120 hours. (audit 72, SRS - 48) Mistribution of hours of classroom and independent work Ukrainian Language of teaching Ukrainian Pulpit Mechanical engineering technologies Requirements for the beginning of the study Knowledge of CAD systems (SolidWorks) at the initial level, for the full development of t discipline in the future. What will be studied This course will study: - Basic principles of construction of parts and assemblies. - Development of drawings according to different standards (GOST, ISO) - The study of various kinds of measuring tools. - Study of the module for CAE calculations SolidWorks Simulation. - Study of the module for gas and hydrodynamic calculations - SolidWorks Flow Simulation. - Design of complex parts by surface modeling methods. The basic principles of work in the PDM system are considered Why it is interesting/necessary interesting/necessary dimensional parts, analyze parts and see in real time how this or that part will behave unde load and in dynamics. The methods of work of a group of students on one project will be considered. What you can learn (learning outcomes) complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future. How can you use the acquired knowledge and skills (competence) The acquired knowledge of students at the end of this course will be aimed at designing parts in the future. Information support Lecture notes, a computer class for laboratory work, a laboratory for prac	VO level	First (bachelor's)
distribution of hours of classroom and independent work Ukrainian Language of teaching Ukrainian Pulpit Mechanical engineering technologies Requirements for the beginning of the study Knowledge of CAD systems (SolidWorks) at the initial level, for the full development of t discipline in the future. What will be studied This course will study: - Basic principles of construction of parts and assemblies. - Development of drawings according to different standards (GOST, ISO) - The study of various kinds of measuring tools. - Study of the methodology for constructing gears, sprocket pulleys and their assemblies the Gerteg software module - Study of the module for CAE calculations SolidWorks Simulation. - Study of the module for gas and hydrodynamic calculations - SolidWorks Flow Simulation. - Design of complex parts by surface modeling methods. The basic principles of work in the PDM system are considered Why it is interesting/necessary to study In the process of learning, students will be able to learn new methods of constructing three dimensional parts, analyze parts and see in real time how this or that part will behave unde load and in dynamics. The methods of work of a group of students on one project will be considered. What you can learn (learning outcomes) According to the results of this course, students will be able to fully master the modeling o complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future. How can you use the acquired knowledge and skills (competence) The acquired knowledge of students at the end of this course will be aimed at designing parts in the	Course, semester	3rd year 6 semester
of classroom and independent workUkrainianLanguage of teachingUkrainianPulpitMechanical engineering technologiesRequirements for the beginning of the studyMechanical engineering technologiesWhat will be studiedThis course will study: - Basic principles of construction of parts and assemblies. - Development of drawings according to different standards (GOST, ISO) - The study of various kinds of measuring tools. - Study of the methodology for constructing gears, sprocket pulleys and their assemblies the Gerteg software module - Study of the module for CAE calculations - SolidWorks Flow Simulation. - Study of the module for gas and hydrodynamic calculations - SolidWorks Flow Simulation. - Design of complex parts by surface modeling methods. The basic principles of work in the PDM system are consideredWhy it is interesting/necessary to studyIn the process of learning, students will be able to learn new methods of constructing three- dimensional parts, analyze parts and see in real time how this or that part will behave unde load and in dynamics. The methods of work of a group of students will be able to fully master the modeling o complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future.What you can learn (learning outcomes)According to the results of this course, students will be able to fully master the modeling o to complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future.How can you use the acquired knowledge and skills (competence)The acquired knowledge of students at the end of this course will be aimed at designing parts in the future.Information	Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
independent work Language of teaching Pulpit Mechanical engineering technologies Requirements for the beginning of the study Knowledge of CAD systems (SolidWorks) at the initial level, for the full development of t discipline in the future. What will be studied This course will study: - Basic principles of construction of parts and assemblies. - Development of drawings according to different standards (GOST, ISO) - The study of various kinds of measuring tools. - Study of the methodology for constructing gears, sprocket pulleys and their assemblies the Gerteg software module - Study of the module for CAE calculations SolidWorks Simulation. - Study of the module for CAE calculations SolidWorks Simulation. - Study of the module for CAE calculations SolidWorks Simulation. - Study of the module for GAE calculations solidWorks Simulation. - Study of the module for GAE calculations solidWorks Simulation. - Study of the module for GAE calculations solidWorks Simulation. - Study of the module for GAE calculations solidWorks Simulation. - Design of complex parts by surface modeling methods. The basic principles of work in the PDM system are considered Why it is interesting/necessary to study In the process of learning, students will be able to learn new methods of constructing three dimensional parts, analyze parts and see in real time how this or that part will behave unde load and in dynamics. The methods of work of a group of students on one project will be considered. What you can learn (learning outcomes) According to the results of this course, students will be able to fully master the modeling o complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the futu	distribution of hours	
Language of teaching Ukrainian Pulpit Mechanical engineering technologies Requirements for the beginning of the study Knowledge of CAD systems (SolidWorks) at the initial level, for the full development of t discipline in the future. What will be studied This course will study: - Basic principles of construction of parts and assemblies. - Development of drawings according to different standards (GOST, ISO) - The study of various kinds of measuring tools. - Study of the methodology for constructing gears, sprocket pulleys and their assemblies the Gerteg software module - Study of the module for CAE calculations SolidWorks Simulation. - Study of the module for GAE calculations SolidWorks Simulation. - Study of the module for gas and hydrodynamic calculations - SolidWorks Flow Simulation. - Design of complex parts by surface modeling methods. The basic principles of work in the PDM system are considered In the process of learning, students will be able to learn new methods of constructing three dimensional parts, analyze parts and see in real time how this or that part will behave unde load and in dynamics. The methods of work of a group of students will be able to fully master the modeling o complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future. How can you use the acquired knowledge and skills (competence) The acquired knowledge of students at the end of this course will be aimed at designing parts in the future. Information support Lecture notes, a computer class for laboratory work, a laboratory for practical skills in using	of classroom and	
teachingPulpitMechanical engineering technologiesRequirements for the beginning of the studyKnowledge of CAD systems (SolidWorks) at the initial level, for the full development of t discipline in the future.What will be studiedThis course will study: - Basic principles of construction of parts and assemblies. - Development of drawings according to different standards (GOST, ISO) - The study of various kinds of measuring tools. - Study of the methodology for constructing gears, sprocket pulleys and their assemblies the Gerteg software module - Study of the module for CAE calculations SolidWorks Simulation. - Study of the module for gas and hydrodynamic calculations - SolidWorks Flow Simulation. - Design of complex parts by surface modeling methods. The basic principles of work in the PDM system are consideredWhy it is interesting/necessary to studyIn the process of learning, students will be able to learn new methods of constructing three dimensional parts, analyze parts and see in real time how this or that part will behave unde load and in dynamics. The methods of work of a group of students on one project will be considered.What you can learn (learning outcomes)According to the results of this course, students will be able to fully master the modeling o complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future.How can you use the acquired knowledge and skills (competence)Lecture notes, a computer class for laboratory work, a laboratory for practical skills in using parts in the future.	independent work	
Pulpit Mechanical engineering technologies Requirements for the beginning of the study Knowledge of CAD systems (SolidWorks) at the initial level, for the full development of t discipline in the future. What will be studied This course will study: - Basic principles of construction of parts and assemblies. - Development of drawings according to different standards (GOST, ISO) - The study of various kinds of measuring tools. - Study of the methodology for constructing gears, sprocket pulleys and their assemblies the Gerteg software module - Study of the module for CAE calculations SolidWorks Simulation. - Study of the module for gas and hydrodynamic calculations - SolidWorks Flow Simulation. - Design of complex parts by surface modeling methods. The basic principles of work in the PDM system are considered Why it is interesting/necessary to study In the process of learning, students will be able to learn new methods of constructing three dimensional parts, analyze parts and see in real time how this or that part will behave unde load and in dynamics. The methods of work of a group of students on one project will be considered. What you can learn (learning outcomes) According to the results of this course, students will be able to fully master the modeling o complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future. How can you use the acquired knowledge and skills (competence) Lecture notes, a computer class for laboratory work, a laboratory for practical skills in using the subtle science of the science of	Language of	Ukrainian
Requirements for the beginning of the studyKnowledge of CAD systems (SolidWorks) at the initial level, for the full development of t discipline in the future.What will be studiedThis course will study: - Basic principles of construction of parts and assemblies. - Development of drawings according to different standards (GOST, ISO) - The study of various kinds of measuring tools. - Study of the methodology for constructing gears, sprocket pulleys and their assemblies the Gerteg software module - Study of the module for CAE calculations SolidWorks Simulation. - Study of the module for gas and hydrodynamic calculations - SolidWorks Flow Simulation. - Design of complex parts by surface modeling methods. The basic principles of work in the PDM system are consideredWhy it is interesting/necessary to studyIn the process of learning, students will be able to learn new methods of constructing three dimensional parts, analyze parts and see in real time how this or that part will behave unde load and in dynamics. The methods of work of a group of students on one project will be considered.What you can learn (learning outcomes)According to the results of this course, students will be able to fully master the modeling o complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future.How can you use the acquired knowledge and skills (competence)The acquired knowledge of students at the end of this course will be aimed at designing parts in the future.Information supportLecture notes, a computer class for laboratory work, a laboratory for practical skills in using	teaching	
the beginning of the studydiscipline in the future.What will be studiedThis course will study: - Basic principles of construction of parts and assemblies. - Development of drawings according to different standards (GOST, ISO) - The study of various kinds of measuring tools. - Study of the methodology for constructing gears, sprocket pulleys and their assemblies the Gerteg software module - Study of the module for CAE calculations SolidWorks Simulation. - Study of the module for gas and hydrodynamic calculations - SolidWorks Flow Simulation. - Design of complex parts by surface modeling methods. The basic principles of work in the PDM system are consideredWhy it is interesting/necessary to studyIn the process of learning, students will be able to learn new methods of constructing three indimensional parts, analyze parts and see in real time how this or that part will behave unde load and in dynamics. The methods of work of a group of students on one project will be considered.What you can learn (learning outcomes)According to the results of this course, students will be able to fully master the modeling o complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future.How can you use the acquired knowledge and skills (competence)Lecture notes, a computer class for laboratory work, a laboratory for practical skills in using	Pulpit	Mechanical engineering technologies
studyThis course will study: 	Requirements for	Knowledge of CAD systems (SolidWorks) at the initial level, for the full development of the
What will be studiedThis course will study: - Basic principles of construction of parts and assemblies. - Development of drawings according to different standards (GOST, ISO) - The study of various kinds of measuring tools. - Study of the methodology for constructing gears, sprocket pulleys and their assemblies the Gerteg software module - Study of the module for CAE calculations SolidWorks Simulation. - Study of the module for gas and hydrodynamic calculations - SolidWorks Flow Simulation. - Design of complex parts by surface modeling methods. The basic principles of work in the PDM system are consideredWhy it is interesting/necessary to studyIn the process of learning, students will be able to learn new methods of constructing three dimensional parts, analyze parts and see in real time how this or that part will behave unde load and in dynamics. The methods of work of a group of students on one project will be considered.What you can learn (learning outcomes)According to the results of this course, students will be able to fully master the modeling o complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future.How can you use the acquired knowledge and skills (competence)The acquired knowledge of students at the end of this course will be aimed at designing parts in the future.Information supportLecture notes, a computer class for laboratory work, a laboratory for practical skills in using the supervisional set of the supervisional set of	the beginning of the	discipline in the future.
 Basic principles of construction of parts and assemblies. Development of drawings according to different standards (GOST, ISO) The study of various kinds of measuring tools. Study of the methodology for constructing gears, sprocket pulleys and their assemblies the Gerteg software module Study of the module for CAE calculations SolidWorks Simulation. Study of the module for gas and hydrodynamic calculations SolidWorks Flow Simulation. Design of complex parts by surface modeling methods. The basic principles of work in the PDM system are considered Why it is interesting/necessary to study The methods of work of a group of students on one project will be considered. What you can learn According to the results of this course, students will be able to fully master the modeling of complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future. How can you use the acquired knowledge of students at the end of this course will be aimed at designing parts in the future. Information support Lecture notes, a computer class for laboratory work, a laboratory for practical skills in using the study of the future. 	study	
 Basic principles of construction of parts and assemblies. Development of drawings according to different standards (GOST, ISO) The study of various kinds of measuring tools. Study of the methodology for constructing gears, sprocket pulleys and their assemblies the Gerteg software module Study of the module for CAE calculations SolidWorks Simulation. Study of the module for gas and hydrodynamic calculations SolidWorks Flow Simulation. Design of complex parts by surface modeling methods. The basic principles of work in the PDM system are considered Mhy it is interesting/necessary to study In the process of learning, students will be able to learn new methods of constructing three dimensional parts, analyze parts and see in real time how this or that part will behave unde load and in dynamics. The methods of work of a group of students on one project will be considered. What you can learn According to the results of this course, students will be able to fully master the modeling of complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future. How can you use the acquired knowledge of students at the end of this course will be aimed at designing parts in the future. Information support Lecture notes, a computer class for laboratory work, a laboratory for practical skills in using the subtraction of the study is a substification of the study is a study in the future. 	What will be studied	This course will study:
 Development of drawings according to different standards (GOST, ISO) The study of various kinds of measuring tools. Study of the methodology for constructing gears, sprocket pulleys and their assemblies the Gerteg software module Study of the module for CAE calculations SolidWorks Simulation. Study of the module for gas and hydrodynamic calculations SolidWorks Flow Simulation. Design of complex parts by surface modeling methods. The basic principles of work in the PDM system are considered Why it is In the process of learning, students will be able to learn new methods of constructing three dimensional parts, analyze parts and see in real time how this or that part will behave unde load and in dynamics. The methods of work of a group of students on one project will be considered. What you can learn (learning outcomes) The acquired knowledge of students at the end of this course will be aimed at designing parts in the future. How can you use the acquired knowledge of students at the end of this course will be aimed at designing parts in the future. Information support Lecture notes, a computer class for laboratory work, a laboratory for practical skills in usir 	what will be studied	
 The study of various kinds of measuring tools. Study of the methodology for constructing gears, sprocket pulleys and their assemblies the Gerteg software module Study of the module for CAE calculations SolidWorks Simulation. Study of the module for gas and hydrodynamic calculations SolidWorks Flow Simulation. Design of complex parts by surface modeling methods. The basic principles of work in the PDM system are considered In the process of learning, students will be able to learn new methods of constructing three dimensional parts, analyze parts and see in real time how this or that part will behave unde load and in dynamics. The methods of work of a group of students on one project will be considered. What you can learn (learning outcomes) How can you use the acquired knowledge of students at the end of this course will be aimed at designing parts in the future. How can you use the acquired knowledge of students at the end of this course will be aimed at designing parts in the future. Information support Lecture notes, a computer class for laboratory work, a laboratory for practical skills in usir 		
 Study of the methodology for constructing gears, sprocket pulleys and their assemblies the Gerteg software module Study of the module for CAE calculations SolidWorks Simulation. Study of the module for gas and hydrodynamic calculations SolidWorks Flow Simulation. Design of complex parts by surface modeling methods. The basic principles of work in the PDM system are considered In the process of learning, students will be able to learn new methods of constructing three dimensional parts, analyze parts and see in real time how this or that part will behave unde load and in dynamics. The methods of work of a group of students on one project will be considered. What you can learn (learning outcomes) What you use the acquired knowledge and skills (competence) Information support Lecture notes, a computer class for laboratory work, a laboratory for practical skills in using the substitution of the substitution in the substitution is provided work. 		
the Gerteg software module- Study of the module for CAE calculations SolidWorks Simulation Study of the module for gas and hydrodynamic calculations- Study of the module for gas and hydrodynamic calculations- SolidWorks Flow Simulation Design of complex parts by surface modeling methods.The basic principles of work in the PDM system are consideredWhy it isinteresting/necessaryto studyIn the process of learning, students will be able to learn new methods of constructing threedimensional parts, analyze parts and see in real time how this or that part will behave undeload and in dynamics.The methods of work of a group of students on one project will be considered.What you can learn(learning outcomes)How can you use the acquired knowledge and skills (competence)Information supportLecture notes, a computer class for laboratory work, a laboratory for practical skills in usir		
 Study of the module for CAE calculations SolidWorks Simulation. Study of the module for gas and hydrodynamic calculations SolidWorks Flow Simulation. Design of complex parts by surface modeling methods. The basic principles of work in the PDM system are considered Why it is interesting/necessary to study In the process of learning, students will be able to learn new methods of constructing three dimensional parts, analyze parts and see in real time how this or that part will behave unde load and in dynamics. The methods of work of a group of students on one project will be considered. What you can learn (learning outcomes) According to the results of this course, students will be able to fully master the modeling o complex three-dimensional parts, fully learn all the subleties of building drawings that the will need in the future. How can you use the acquired knowledge and skills (competence) Information support Lecture notes, a computer class for laboratory work, a laboratory for practical skills in usir 		
 Study of the module for gas and hydrodynamic calculations SolidWorks Flow Simulation. Design of complex parts by surface modeling methods. The basic principles of work in the PDM system are considered Why it is in the process of learning, students will be able to learn new methods of constructing three dimensional parts, analyze parts and see in real time how this or that part will behave unde load and in dynamics. The methods of work of a group of students on one project will be considered. What you can learn (learning outcomes) Complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future. How can you use the acquired knowledge and skills (competence) Information support Lecture notes, a computer class for laboratory work, a laboratory for practical skills in using the subtlemet of the substant of the super student of the super student of the support in the future. 		
 SolidWorks Flow Simulation. Design of complex parts by surface modeling methods. The basic principles of work in the PDM system are considered Why it is interesting/necessary to study What you can learn (learning outcomes) What you can learn (learning outcomes) According to the results of this course, students will be able to fully master the modeling of complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future. How can you use the acquired knowledge and skills (competence) Information support Lecture notes, a computer class for laboratory work, a laboratory for practical skills in using 		
 Design of complex parts by surface modeling methods. The basic principles of work in the PDM system are considered Why it is interesting/necessary to study What you can learn (learning outcomes) What you use the acquired knowledge and skills (competence) Information support Lecture notes, a computer class for laboratory work, a laboratory for practical skills in usin 		
The basic principles of work in the PDM system are consideredWhy it is interesting/necessary to studyIn the process of learning, students will be able to learn new methods of constructing three dimensional parts, analyze parts and see in real time how this or that part will behave unde load and in dynamics. The methods of work of a group of students on one project will be considered.What you can learn (learning outcomes)According to the results of this course, students will be able to fully master the modeling o complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future.How can you use the acquired knowledge and skills (competence)The acquired knowledge of students at the end of this course will be aimed at designing parts in the future.Information supportLecture notes, a computer class for laboratory work, a laboratory for practical skills in using the subtletice of the subtle in the future.		
Why it is interesting/necessary to studyIn the process of learning, students will be able to learn new methods of constructing three dimensional parts, analyze parts and see in real time how this or that part will behave unde load and in dynamics. The methods of work of a group of students on one project will be considered.What you can learn (learning outcomes)According to the results of this course, students will be able to fully master the modeling o complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future.How can you use the acquired knowledge and skills (competence)The acquired knowledge of students at the end of this course will be aimed at designing parts in the future.Information supportLecture notes, a computer class for laboratory work, a laboratory for practical skills in using the subtletice of the subtle in the subtletice of the subtle in using the subtletice of the subtle in the subtle in the subtle in the future.		
interesting/necessary to studydimensional parts, analyze parts and see in real time how this or that part will behave under load and in dynamics. The methods of work of a group of students on one project will be considered.What you can learn (learning outcomes)According to the results of this course, students will be able to fully master the modeling o complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future.How can you use the acquired knowledge and skills (competence)The acquired knowledge of students at the end of this course will be aimed at designing parts in the future.Information supportLecture notes, a computer class for laboratory work, a laboratory for practical skills in using the support is the supervised of the sup	Why it is	
to studyload and in dynamics. The methods of work of a group of students on one project will be considered.What you can learn (learning outcomes)According to the results of this course, students will be able to fully master the modeling o complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future.How can you use the acquired knowledge and skills 		
The methods of work of a group of students on one project will be considered.What you can learn (learning outcomes)According to the results of this course, students will be able to fully master the modeling o complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future.How can you use the acquired knowledge and skills (competence)The acquired knowledge of students at the end of this course will be aimed at designing parts in the future.Information supportLecture notes, a computer class for laboratory work, a laboratory for practical skills in using the support in the supervised of the supervis	<u> </u>	
What you can learn (learning outcomes)According to the results of this course, students will be able to fully master the modeling of complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future.How can you use the acquired knowledge and skills (competence)The acquired knowledge of students at the end of this course will be aimed at designing parts in the future.Information supportLecture notes, a computer class for laboratory work, a laboratory for practical skills in using the support in the support in the support in the support is a support in the support in the support in the support is a support in the support in the support is a support in the superimential support is a support in the support is a support in the superimential support in the support is a support in the superimential support is a support in the superimential support in the superimential support is a support in the superimential support in the superimential support is a support in the superimential support in the superimential support is a support in the superimential support in the superimential support is a superimential support in the superimential support in the superimential support is a superimential superimential support in the superimential superimenti	to study	•
(learning outcomes)complex three-dimensional parts, fully learn all the subtleties of building drawings that the will need in the future.How can you use the acquired knowledge and skills (competence)The acquired knowledge of students at the end of this course will be aimed at designing parts in the future.Information supportLecture notes, a computer class for laboratory work, a laboratory for practical skills in using	What you can learn	
will need in the future.How can you use the acquired knowledge and skills (competence)The acquired knowledge of students at the end of this course will be aimed at designing parts in the future.Information supportLecture notes, a computer class for laboratory work, a laboratory for practical skills in using		
How can you use the acquired knowledge and skills (competence)The acquired knowledge of students at the end of this course will be aimed at designing parts in the future.Information supportLecture notes, a computer class for laboratory work, a laboratory for practical skills in using	(ical ling outcomes)	
acquired knowledge and skills (competence)parts in the future.Information supportLecture notes, a computer class for laboratory work, a laboratory for practical skills in usin	How can you use the	
and skills (competence) Information support Lecture notes, a computer class for laboratory work, a laboratory for practical skills in usin		
(competence) Information support Lecture notes, a computer class for laboratory work, a laboratory for practical skills in usir		parts in the rather.
Information support Lecture notes, a computer class for laboratory work, a laboratory for practical skills in usir		
	Information support	
		a measuring tool.
Form of classes Lectures, practical classes	Form of classes	Lectures, practical classes
Semester control Passed	Semester control	Passed

Educational component 4 F-Catalog

Discipline	K4.3 :: Fundamentals of macro programming
VO level	First (bachelor's)
Course, semester	3rd year 6 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of teaching	Ukrainian
Pulpit	Mechanical engineering technologies
Requirements for	Basic knowledge of the courses "Informatics", "Higher Mathematics", "Engineering and
the beginning of the	Computer Graphics"
study	
What will be studied	The purpose of the discipline is to form students' abilities to develop their own computer
	programs for automating the solution of engineering problems;
Why it is	- to solve with the help of computer equipment general technical and special problems of
interesting/necessary	mechanical engineering technology;
to study	- independently solve the tasks using reference books
What you can learn	- use modern office software;
(learning outcomes)	- use the integrated software development environment;
	- to solve with the help of computer equipment general engineering and special problems of
	mechanical engineering;
	- use the appropriate software to automate calculations;
How can you use the	Automate the development of programs for general engineering and engineering purposes
acquired knowledge	
and skills	
(competence)	
Information support	Lecture notes, a computer class for laboratory work, a laboratory for practical skills in using a measuring tool.
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component 5 F-Catalog

Discipline	K5.1 :: General structure of aircraft and their units
VO level	First (bachelor's)
Course, semester	3rd year 6 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	Basic knowledge of the disciplines "Mechanics of structures", "Machine parts and design
the beginning of the	bases", "Engineering and computer graphics"
study	
What will be studied	This discipline is designed to provide students with basic knowledge in the field of aircraft
	construction: the composition and features of the formation of modern aviation structures,
	taking into account the conditions of their operation.
Why it is	As a result of mastering the discipline, the applicant for higher education receives
interesting/necessary	knowledge of the general principles of building structures of different classes of aircraft;
to study	methods for developing design documentation and building computer models using CAD systems
What you can learn	analyze technical tasks, search for prototypes and choose the most optimal methods for
(learning outcomes)	solving the design problem; determine the primary structure of the mechanical structure of
× 0 /	the aircraft and the preliminary values of the rigid parameters of its elements; based on the
	final data on the details of the structure, develop technical documentation that meets the
	requirements of standards and other regulatory documents.
How can you use the	The purpose of the discipline is the acquisition by students of theoretical knowledge and
acquired knowledge	practical experience on the peculiarities of the formation of modern aviation structures of
and skills	units and systems, taking into account the operating conditions of the aircraft.
(competence)	
Information support	Educational and work programs of the discipline, textbook (workshop), lecture notes
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component 5 F-Catalog

Discipline	K5.2 :: Design features of high-tech products of machine-
	building production
VO level	First (bachelor's)
Course, semester	3rd year 6 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	Basic knowledge of the disciplines "Mechanics of structures", "Machine parts and design
the beginning of the	bases", "Engineering and computer graphics"
study	
What will be studied	System and aviation system. Classification of aircraft. Basic elements and
	basic subsystems of the aviation system. Control systems. Ailerons. Steering wheel height
	and stabilizer. Steering wheel. Flaps. Wing mechanization. Autopilot.
Why it is	As a result of mastering the course, the student will know:
interesting/necessary	- scientific, design, technological and production bases for the creation of modern aircraft;
to study	- features of aircraft as complex high-tech technical systems;
	- basic structural elements and systems of aircraft;
What you can learn	The objectives of studying the discipline are students' mastery: the basic concepts and
(learning outcomes)	terminology of the aerospace industry; basics of aircraft design and their components; basics
	of engine design and functioning; principles of classification of modern aircraft; general
	characteristics and designs of aircraft, aircraft and rocket engines;
How can you use the	- independently work with educational, reference, and scientific and technical literature;
acquired knowledge	- analyze scientific, industrial and other processes that are the basis for the development of
and skills	aviation;
(competence)	- adapt to the content of other basic modules in further training courses
Information support	Educational and work programs of the discipline, textbook (workshop), lecture notes
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component 5 F-Catalog

Discipline	K5.3 :: Design and design of aircraft
VO level	First (bachelor's)
Course, semester	3rd year 6 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	Basic knowledge of the disciplines "Mechanics of structures", "Machine parts and design
the beginning of the	bases", "Engineering and computer graphics"
study	
What will be studied	Gaining knowledge on the design schemes of aircraft and power units of the airframe; General questions on the basics of design and calculations of individual aircraft components
	and structures for strength
Why it is	In combination with course and diploma design, as well as pre-diploma practice, the
interesting/necessary	discipline provides practical mastering of the basics of designing and calculating aircraft
to study	structures.
What you can learn	- general principles of construction of structures of different classes of aircraft;
(learning outcomes)	- methods of designing aircraft
	- analyze technical tasks, search for prototypes and choose the most optimal methods for solving the design problem;
	- to carry out calculations of the main elements of aircraft
How can you use the	The knowledge acquired by students during the study of this discipline will be useful to
acquired knowledge	them: in further production activities and in the implementation of course and diploma
and skills	projects.
(competence)	
Information support	Educational and work programs of the discipline, textbook (workshop), lecture notes
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component 6 F-Catalog

Discipline	K6.1 :: Microprocessor technology
VO level	First (bachelor's)
Course, semester	3rd year 6 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	Knowledge gained in the study of the disciplines "Electrical Engineering and Electronics",
the beginning of the	"Higher Mathematics ", "Informatics"
study	
What will be studied	- basic concepts about the elements of microprocessor technology, their functions, purpose and field of application; typical elements and nodes of microprocessor technology;
	 basic knowledge about the representation of data in the elements of the microprocessor system; the main types of operations performed with data; basics of programming microprocessors; basic principles of the use of microprocessor systems in solving problems of optimization
	of technological processes of parts processing and assembly of products
Why it is interesting/necessary to study	The requirement of the modern level of development of technology is the possession of at least basic knowledge of the basic means of automation used in all areas of mechanical engineering.
What you can learn (learning outcomes)	The student will know the basic principles of microprocessor technology; get acquainted with typical microprocessor devices; typical engineering processes that are automated using microprocessor technology.
How can you use the	After reading the course, the student will be able to:
acquired knowledge	- choose the right microprocessor components;
and skills	- correctly combine microprocessor components;
(competence)	- properly operate microprocessor devices;
	- apply engineering methods of design and construction of microprocessor devices;
	use modern methods of debugging hardware and software of microprocessor devices.
Information support	Educational and work programs of the discipline, textbook (workshop), lecture notes
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component 6 F-Catalog

Discipline	K6.2 :: Basics of automation hardware
VO level	First (bachelor's)
Course, semester	3rd year 6 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	Knowledge of the disciplines "Electrical Engineering and Electronics", "Higher
the beginning of the	Mathematics ", "Informatics"
study	
What will be studied	The subject of study are the basic principles of the functioning of automation hardware,
	namely: the basic principles of operation, the mathematical basis for the functioning of
	hardware, typical examples of automation of operations and engineering processes, the
	basics of hardware programming.
Why it is	Automation hardware is a basic element of any complex technical system in mechanical
interesting/necessary	engineering. The student must have knowledge of the course and acquire skills for
to study	competitive advantage in the labor market and successful employment.
What you can learn	- basic principles of operation of automation hardware;
(learning outcomes)	- typical hardware, their model of use;
	- characteristic processes of automation engineering;
	- basic principles of programming and debugging automation hardware.
How can you use the	- choose the right automation hardware;
acquired knowledge	- correctly combine automation components;
and skills	- properly operate hardware;
(competence)	- use engineering methods of designing and constructing automation hardware;
	- use modern methods of debugging hardware and software of automation hardware.
Information support	Educational and work programs of the discipline, lecture notes
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component 6 F-Catalog

Discipline	K6.3 :: Fundamentals of microcontroller technology
VO level	First (bachelor's)
Course, semester	3rd year 6 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	Knowledge gained in the study of the disciplines "Electrical Engineering and Electronics",
the beginning of the	"Higher Mathematics ", "Informatics"
study	
What will be studied	The purpose of the discipline is to give an important amount of relevant technical knowledge and practical skills in the field of application of microcontroller technology for the management, control and diagnosis of production processes in mechanical engineering.
Why it is	The discipline is an applied discipline that studies the basics of digital electronics,
interesting/necessary	microprocessor control systems for technical objects and their diagnostics, in particular in
to study	metalworking.
What you can learn (learning outcomes)	 basic concepts about the elements of microprocessor technology, their functions, purpose and field of application; typical elements and nodes of microprocessor technology; basic knowledge about the representation of data in the elements of the microprocessor system; the main types of operations performed with data; basics of programming
	microprocessors;
	- basic principles of the use of microprocessor systems in solving problems of optimization
	of technological processes of parts processing and assembly of products
How can you use the	Such important concepts as the basics of digital (discrete) electronics, the element base of
acquired knowledge	microprocessor systems, means of pairing real objects with microcomputers, means of
and skills	reproducing and transmitting information, etc. are considered.
(competence)	
Information support	Educational and work programs of the discipline, lecture notes
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component 7 F-Catalog

Discipline	K7.1 :: Cutting tools
VO level	First (bachelor's)
Course, semester	3rd year 6 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	Machanical anginaging taghnologies
Pulpit Boguingments for	Mechanical engineering technologies Knowledge of general and professional training cycles, namely: "Higher Mathematics", "
Requirements for the beginning of the	
study	Linear Algebra and Analytical Geometry", "Informatics", "Engineering and Computer Graphics", "Mechanics of Materials and Structures "
What will be studied	- classification, purpose and principles of operation of standard tools
	- Geometric parameters of the cutting part of metal-cutting tools
	- The main dependencies and relationships between the geometry of cutting tools and their
	influence on the process of machining parts, on their accuracy, roughness and quality of
	the surface layer
	- characteristics of tool materials, rules for choosing tool material, impact on productivity
	and quality of processing
	- Profiling special tools
	- General principles of construction of tooling machines with numerical control and automatic lines
Why it is	It is impossible to manufacture the part in accordance with the requirements without
interesting/necessary	ensuring the optimal choice of cutting tools.
to study	The development of technological processes is associated with the expedient choice and
	creation of more advanced technological equipment, tools for tooling, mechanization and
	automation of production.
What you can learn	- solve problems related to the rational operation of cutting tools in different production
(learning outcomes)	conditions
	- it is reasonable to choose the necessary cutting tools from a set of standard ones, based
	on the specified quality requirements of parts and the conditions for their processing
	- design special shaped cutting tools
How can you use the	- independently work with literature, technical documentation and standards
acquired knowledge	- to carry out instrumental support of technological processes: it is reasonable to choose
and skills	the type of cutting tool for a given technological process, design the tool and properly
(competence)	operate it
Information support	Educational and work programs of the discipline, educational manual: electronic edition of
	URL http://campus.kpi.ua/tutor/index.php?mode=mob&show&irid=181058
	Educational and methodical complex Google Class URL
	https://classroom.google.com/c/MTkxNTE3ODMxNDVa
Form of classes	Lectures, laboratory classes
Semester control	Passed

Educational component 7 F-Catalog

Discipline	K7.2 :: Cutting equioment
VO level	First (bachelor's)
Course, semester	3rd year 6 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	Knowledge of general and professional training cycles, namely: "Higher Mathematics", "
the beginning of the	Linear Algebra and Analytical Geometry", "Informatics", "Engineering and Computer
study	Graphics", " Mechanics of Materials and Structures "
What will be studied	- theory of forming surfaces of parts and cutting tools;
	- basic dependencies and relationships between the geometry of cutting tools and the
	geometry of the part, their influence on the process of machining parts, on their accuracy,
	roughness and quality of the surface layer;
	- selection, design and calculation of metal-cutting tools, both general and special purpose;
	- the use of cutting tools in automated production.
Why it is	- The development of technological processes is associated with the expedient choice and
interesting/necessary	creation of more advanced technological equipment, tools for tooling, mechanization and
to study	automation of production. It is reasonable to choose and design various designs of
	cutting tools for modern metalworking systems is a component of technological
	preparation of production.
What you can learn	- principles and algorithms for solving typical problems of tool formation using computers;
(learning outcomes)	- principles and algorithms for constructing modern instrumental systems;
	- methodological approaches, analytical methods of calculation, which are common and
	allow you to solve all issues of designing the tool in a complex; - to solve the issue of the use of cutting tools in automated production.
How can you use the	 use algorithms and results of calculations obtained on a computer in the field of
acquired knowledge	instrumental support of technological processes;
and skills	- It is reasonable to choose and design various designs of cutting tools for modern
(competence)	metalworking systems.
· _ ·	
Information support	Educational and work programs of the discipline, educational manual: electronic
	edition of URL
	http://campus.kpi.ua/tutor/index.php?mode=mob&show&irid=181058
	Educational and methodical complex Google Class
	URL: https://classroom.google.com/c/MTkxNTE3ODMxNDVa
Form of classes	Lectures, laboratory classes
Semester control	Passed

Educational component 7 F-Catalog

Discipline	K7.3 :: Means of forming machine parts from non-metallic
	materials
VO level	First (bachelor's)
Course, semester	3rd year 6 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	Knowledge of the disciplines of general and professional training cycles, namely: "Higher
the beginning of the	Mathematics", " Linear Algebra and Analytical Geometry"
study	
What will be studied	The purpose of the credit module is to form students' ability to effectively use CAD in the
	field of tool production and competently design various designs of cutting tools for modern
	metalworking systems.
Why it is	- solve problems related to the rational operation of cutting tools in different production
interesting/necessary	conditions;
to study	- it is reasonable to choose the necessary cutting tools from a set of standard ones, based on
	the specified quality requirements of parts and the conditions for their processing;
	- design shaped cutting tools.
What you can learn	- principles, methods and algorithms for solving typical problems of profiling a tool using
(learning outcomes)	CAD;
	- principles, methods and algorithms for constructing modern CAD;
	- methodological approaches, analytical methods of calculation, which are common and
	allow you to solve all issues of designing the tool in a complex;
	- to solve the issue of the use of cutting tools in automated production.
How can you use the	- design and calculate metal-cutting tools, both general and special purpose;
acquired knowledge	- strictly formalize and define optimization criteria;
and skills	- use algorithms and results of calculations obtained on CAD;
(competence)	- to solve the issues of forming the surfaces of tools;
Information annext	- design shaped cutting tools.
Information support	Syllabus of the discipline, presentations for the course, tasks for practical work.
Form of classes	Lectures, laboratory classes
Semester control	Passed

Educational component 8 F-Catalog

Discipline	K8.1 :: Fundamentals of scientific research
VO level	First (bachelor's)
Course, semester	4th year 7 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	Basic knowledge of mathematics
the beginning of the	
study	
What will be studied	Patterns and methodology of the scientific path of knowledge
Why it is	Ability to see causes, trends, driving forces in a supposedly messy mixture of information
interesting/necessary	and use this knowledge, which will allow you to manage or use processes, and not succumb
to study	to it
What you can learn	Obtaining skills in the formulation and formalization of a scientific problem ("Formalization
(learning outcomes)	of an applied scientific problem"; "Formation of a tree of goals"; "Ishikawa Diagram:
	Determining a Set of Factors"). Knowledge of classification, limitations and problems of
	optimization methods. Formulation and solution of optimization problems of some classes:
	linear, nonlinear and dynamic programming, network planning, multicriterial optimization
	and problems on Markov and absorbing chains.
How can you use the	Acquired knowledge and skills will be useful in further training in the study of courses
acquired knowledge	related to mathematical modeling and optimization, when performing bachelor's and
and skills	master's work. In addition, the ability to deal with problems with the help of scientific
(competence)	methodology will help to understand and solve them (problems) both in further work and in
	the social sphere (personal life).
Information support	Syllabus, lecture notes, guidelines for laboratory work, questions and tasks for the test
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component 8 F-Catalog

VO levelFirst (bachelor's)Course, semester4th year 7 semesterVolume, and distribution of hours of classroom and independent work4 ECTS credits / 120 hours. (audit 72, SRS - 48)Language of teachingUkrainian teachingPulpitMechanical engineering technologiesRequirements for the beginning of the studyBasic knowledge of mathematicsWhat will be studiedDiscrete mathematicsWhat will be studiedDiscrete mathematicsWhy it is interesting/necessary to studyThe course of higher mathematics, which is based on the study of continuous and deterministic processes, is not enough to understand and apply modern methods of modeling, optimization and management of modern systems, most of which are discreted	
Volume, and distribution of hours4 ECTS credits / 120 hours. (audit 72, SRS - 48)distribution of hours of classroom and independent work4 ECTS credits / 120 hours. (audit 72, SRS - 48)Language of teachingUkrainianPulpitMechanical engineering technologiesRequirements for the beginning of the studyBasic knowledge of mathematicsWhat will be studiedDiscrete mathematicsWhat will be studiedDiscrete mathematicsWhy it is interesting/necessaryThe course of higher mathematics, which is based on the study of continuous and deterministic processes, is not enough to understand and apply modern methods of	
distribution of hours of classroom and independent workUkrainianLanguage of teachingUkrainianPulpitMechanical engineering technologiesRequirements for the beginning of the studyBasic knowledge of mathematicsWhat will be studiedDiscrete mathematicsWhat will be studiedDiscrete mathematics, which is based on the study of continuous and deterministic processes, is not enough to understand and apply modern methods of	
of classroom and independent workUkrainianLanguage of teachingUkrainianPulpitMechanical engineering technologiesRequirements for the beginning of the studyBasic knowledge of mathematicsWhat will be studiedDiscrete mathematicsWhat will be studiedDiscrete mathematics, which is based on the study of continuous and deterministic processes, is not enough to understand and apply modern methods of	
independent work Language of teaching Pulpit Mechanical engineering technologies Requirements for the beginning of the study What will be studied Discrete mathematics Why it is interesting/necessary deterministic processes, is not enough to understand and apply modern methods of	
Language of teaching Ukrainian Pulpit Mechanical engineering technologies Requirements for the beginning of the study Basic knowledge of mathematics What will be studied Discrete mathematics Why it is interesting/necessary The course of higher mathematics, which is based on the study of continuous and deterministic processes, is not enough to understand and apply modern methods of	
teachingMechanical engineering technologiesPulpitMechanical engineering technologiesRequirements for the beginning of the studyBasic knowledge of mathematicsWhat will be studiedDiscrete mathematicsWhat will be studiedDiscrete mathematicsWhy it is interesting/necessaryThe course of higher mathematics, which is based on the study of continuous and deterministic processes, is not enough to understand and apply modern methods of	
Pulpit Mechanical engineering technologies Requirements for the beginning of the study Basic knowledge of mathematics What will be studied Discrete mathematics Why it is interesting/necessary The course of higher mathematics, which is based on the study of continuous and deterministic processes, is not enough to understand and apply modern methods of	
Requirements for the beginning of the studyBasic knowledge of mathematicsWhat will be studiedDiscrete mathematicsWhy it is interesting/necessaryThe course of higher mathematics, which is based on the study of continuous and deterministic processes, is not enough to understand and apply modern methods of	
the beginning of the studyDiscrete mathematicsWhat will be studiedDiscrete mathematicsWhy it is interesting/necessaryThe course of higher mathematics, which is based on the study of continuous and deterministic processes, is not enough to understand and apply modern methods of	
studyWhat will be studiedDiscrete mathematicsWhy it is interesting/necessaryThe course of higher mathematics, which is based on the study of continuous and deterministic processes, is not enough to understand and apply modern methods of	
What will be studied Discrete mathematics Why it is The course of higher mathematics, which is based on the study of continuous and deterministic processes, is not enough to understand and apply modern methods of	
Why it is interesting/necessaryThe course of higher mathematics, which is based on the study of continuous and deterministic processes, is not enough to understand and apply modern methods of	
interesting/necessary deterministic processes, is not enough to understand and apply modern methods of	
interesting/necessary deterministic processes, is not enough to understand and apply modern methods of	
to study modeling, optimization and management of modern systems, most of which are discrete	
	e
What you can learn knowledge: basic concepts and mathematical apparatus of mathematical logic, the the	ory of
(learning outcomes) sets, graphs, algorithms, finite automata;	
Skills: solving problems from these sections of discrete mathematics, formalizing proc	
and objects of mechanical engineering technology to describe and model them by mean	s of
discrete mathematics.	
How can you use the Apply the apparatus of discrete mathematics for the formalization, modeling	
acquired knowledge optimization of both the processes of mechanical engineering technology and process	ses in
and skills other branches of science and technology;	
(competence) Understand the principles on which modern modeling and optimization systems are	
be able to formalize the task for their proper use. This is necessary for the effective	
modern software systems and machines, many of which have built-in modelin	g and
optimization systems.	
Information support Syllabus, lecture notes, guidelines for laboratory work, questions and tasks for the test	
Form of classes Lectures, practical classes	
Semester control Passed	

Educational component 8 F-Catalog

Discipline	K8.3 :: Basics of experimental research
VO level	First (bachelor's)
Course, semester	4th year 7 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	Basic knowledge of mathematics
the beginning of the	
study	
What will be studied	The purpose of studying the discipline is to form students' abilities for systemic formulation
	in solving applied problems and the correct application of the methods of mathematical
	statistics and the theory of experiment planning to solve engineering problems.
Why it is	The following will be studied: basic concepts of mathematical statistics; theory of
interesting/necessary	experiment planning; multivariate regression analysis;
to study	
What you can learn	- formalization in the system formulation (multivariate and multi-criteria) of applied
(learning outcomes)	problems that arise in the technology of mechanical engineering;
	- planning a research experiment in order to obtain maximum reliable information with
	restrictions on resources;
	 – carrying out multicriterial compromise optimization;
	- semantic analysis and interpretation of the results;
	- clearly, clearly and reasonably state scientific information and its conclusions;
How can you use the	solving research problems in mechanical engineering technology using methods of
acquired knowledge	mathematical statistics and the theory of experiment planning;
and skills	preparation of a scientific and technical report on the results of research.
(competence)	
Information support	Syllabus, lecture notes, guidelines for laboratory work, questions and tasks for the test
Form of classes	Lectures, practical classes
Semester control	Passed

Educational Component 9 F-Catalog

Discipline	K9.1 :: Heat treatment and coatings
VO level	First (bachelor's)
Course, semester	4th year 7 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Laser technology and physical and technical technologies
Requirements for	Based on knowledge of engineering and computer graphics, General physics, chemistry and
the beginning of the	materials science.
study	
What will be studied	Features of thermal, chemical-thermal methods of material processing, coating using highly concentrated energy flows and electrochemical coatings, physical and physico-chemical processes of changing surface properties during electroerosive, electrochemical, ultrasonic, electron beam, laser, plasma and combined methods of material processing, technological operations and modes of their execution, technological characteristics of processes, working environments, tools and Equipment.
Why it is interesting/necessary to study	The discipline is the basis for mastering the physical essence of processes, methods of their management, technological characteristics and equipment, designing rational and economical technological processes, designing new machines and devices, etc.
What you can learn (learning outcomes)	As a result of studying the discipline, the student will learn to solve systems of typical tasks of activity to perform production functions.
How can you use the acquired knowledge and skills (competence)	The acquired knowledge and skills will enable future specialists to determine the technological characteristics of the processes of processing materials and coating using thermal, chemical-thermal, electrical, electrochemical, acoustic, chemical and combined methods, as well as technological processes. that alter the structure, condition and properties of the surface, using highly concentrated energy flows, electrical discharge, anode saturation, ultrasonic frequency fluctuations or their combined action.
Information support	Syllabus, textbook, presentations for the course, guidelines for the implementation of laboratory work.
Form of classes	Lectures, laboratory classes
Semester control	Passed

Educational Component 9 F-Catalog

Discipline	K9.2 :: Electrophysical and electrochemical processing methods
VO level	First (bachelor's)
Course, semester	4th year 7 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Laser technology and physical and technical technologies
Requirements for	Based on knowledge of engineering and computer graphics, General physics, chemistry and
the beginning of the	materials science.
study	
What will be studied	Features of electrophysical and electrochemical methods of material processing, physical
	and physico-chemical processes in electroerosive, electrochemical, ultrasonic, electron
	beam, laser, plasma and combined methods of material processing, technological operations
	and modes of their execution, technological characteristics of processes, working
	environments, tools and equipment.
Why it is	The discipline is the basis for mastering the physical essence of processes, methods of
interesting/necessary	controlling them, technological characteristics and equipment, designing rational and
to study	economical technological processes, designing new machines, devices, etc.
What you can learn	As a result of studying the discipline, the student will learn to solve systems of typical tasks
(learning outcomes)	of activity to perform production functions.
How can you use the	The acquired knowledge and skills will enable future specialists to determine the
acquired knowledge	technological characteristics of the processes of material processing using electrical
and skills	discharge, highly concentrated energy flows, anode dissolution, oscillations of ultrasonic
(competence)	frequency or their combined action.
Information support	Syllabus, textbook, presentations for the course, guidelines for the implementation of
	laboratory work.
Form of classes	Lectures, laboratory classes
Semester control	Passed

Educational Component 9 F-Catalog

Discipline	K9.3 :: Physical Foundations of Laser Material Processing
VO level	First (bachelor's)
Course, semester	4th year 7 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
	Laser technology and physical and technical technologies
Requirements for	Basic knowledge of mathematics and physics
the beginning of the	
study	
What will be studied	Physical processes that take place when using laser radiation as a technological tool. Special
	problems of the theory of thermal conductivity, melting and evaporation, models of laser
	destruction are studied in detail. The processes of laser cutting by continuous and pulsed-
	periodic radiation, parameters of gas laser cutting, the influence of energy, optical and gas-
	dynamic parameters on laser cutting processes are considered separately.
Why it is	The discipline "Physical foundations of laser processing of materials" is basic for all
interesting/necessary	technological courses in the educational and professional program "Laser technology and
to study	computerized processes of physical and technical processing of materials". Without the
	knowledge gained in this course, the student can not hope for his own further
	professionalism
	Calculate and measure the parameters of technological processes of interaction of radiation
(learning outcomes)	with matter; calculate the temperature of the metal under the action of a laser heat source at a
	given point and at a given time, depending on the type of thermal problem, estimate the
	power density critical for phase transitions, calculate the parameters of destruction under the
	action of laser radiation, calculate the parameters of laser cutting of metals by continuous
	and pulse-periodic radiation, calculate the optimal energy, optical and gas-dynamic
TT (1	parameters of laser cutting
	Ability to apply standard test methods to determine the physical and mechanical properties
acquired knowledge and skills	and technological indicators of the materials used and finished products. Ability to apply modern methods for the development of low-waste, energy-saving and environmentally
(competence)	friendly engineering technologies that ensure the safety of human life and their protection from the possible consequences of accidents, disasters and natural disasters, to apply
	methods of rational use of raw materials, energy and other types of resources in mechanical
	engineering
	Syllabus, textbook, presentations for the course, guidelines for the implementation of
	laboratory work.
	Lectures, laboratory classes
Semester control	Passed

Educational component of the 10 F-Catalog

Discipline	K10.1 :: Robotization of technological processes
VO level	First (bachelor's)
Course, semester	4th year 7 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	Basic knowledge of theoretical mechanics, mechanical engineering technology, machine
the beginning of the	parts, theory of mechanisms and machines
study	
What will be studied	Industrial robotics, technological processes for the manufacture of machine and instrument
	making products in the conditions of robotic production
Why it is	The importance of the use of industrial robots in various sectors of the national economy,
interesting/necessary	especially in mechanical engineering, is difficult to overestimate. The current stage of
to study	industrial and economic development of Ukraine is largely determined by the technological
	level of mechanical engineering, the use of industrial robots in various fields of production
	and the degree of introduction of robotic technologies.
What you can learn	- understanding of the main aspects and specifics of the use of industrial robots in
(learning outcomes)	mechanical engineering;
	- knowledge of the basics of industrial robotics;
	- knowledge of the basic capabilities of industrial robots.
How can you use the	The knowledge acquired by students during the study of this discipline will be useful to
acquired knowledge	them:
and skills	- in further production activities;
(competence)	- when performing course and diploma projects;
	- for the best assimilation of materials of the disciplines "Assembly processes in
	mechanical engineering", "Technological bases of flexible automated production",
	"Design of computer-aided production" and other special disciplines.
Information support	Syllabus, lecture notes, lecture presentations.
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component of the 10 F-Catalog

Discipline	K10.2 :: System analysis
VO level	First (bachelor's)
Course, semester	4th year 7 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	based on the following disciplines: higher mathematics; special sections of mathematics,
the beginning of the	computer science
study	
What will be studied	The purpose of teaching the discipline is the assimilation by students of theoretical
	knowledge of system analysis of systems as a methodological basis for the analysis and
	modeling of complex technical systems.
Why it is	Have knowledge of systems theory; modeling of complexhierarchical systems;
interesting/necessary	signs of classification of systems and models of systems in terms of their research as objects
to study	of computerization; characteristics and basic properties of complexhierarchical systems.
	Master the ability to: decomposition, analysis and synthesis of systems; collect and
	systematize data on the object and its activities; application of a systematic approach
What you can learn	Basic concepts of system analysis and systems
(learning outcomes)	Modeling in system analysis
	Hierarchy analysis method
	Methods of the tree of goals, functional analysis
How can you use the	Mastering knowledge of system analysis will allow the student to implement the tasks of
acquired knowledge	automating information processing, automating the control of objects and processes, using
and skills	computer equipment.
(competence)	
Information support	Syllabus, lecture notes, lecture presentations.
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component of the 10 F-Catalog

Discipline	K10.3 :: Control systems for technological equipment
VO level	First (bachelor's)
Course, semester	4th year 7 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	Basic knowledge of the courses "Technology of mechanical engineering"
the beginning of the	
study	
What will be studied	the main dependencies that arise when performing solid waste for robotic complexes; design
	of route and operational TP using trajectory optimization methods of working and idle
	movements; development of technical documentation for route and operational TP;
	implementation of measures to improve the accuracy and productivity of processing, reduce
	the complexity of TP design and programming
Why it is	Numerical control systems;
interesting/necessary	Constructive and technological features of robotic complexes;
to study	Algorithmic support of robotic complexes;
	Methods of designing route TP;
	Composition and requirements for technological equipment of robotic complexes.
What you can learn	Correctly substantiate and develop TP for robotic complexes;
(learning outcomes)	Programming, coding and recording control software skills
How can you use the	The knowledge acquired by students during the study of this discipline will be useful to
acquired knowledge	them: in further production activities and in the implementation of course and diploma
and skills	projects.
(competence)	
Information support	Syllabus, lecture notes, lecture presentations.
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component 11 F-Catalog

Discipline	K11.1 :: Assembly processes in mechanical engineering
VO level	First (bachelor's)
Course, semester	4th year 8 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
	Ukrainian
teaching	
	Mechanical engineering technologies
-	Basic knowledge of the courses "Technology of mechanical engineering", "Machine parts
the beginning of the	and basics of design", "Metrology, standardization and certification"
study	
	Basic information on technological preparation of aircraft and engineering production; types
	of production and organizational forms of machine assembly; structure of the technological
	process and accompanying documentation; rationing of assembly work; basic operations of
	preparing parts for assembly; method of assembly of detachable and non-detachable
	connections; method of assembling threaded, pressing, plastic-deformed connections, joints
	by soldering, glue, welding; assembly of typical components of machines and mechanisms;
	analysis of the accuracy of the assembly process A modern specialist in the technology of aviation and mechanical engineering should know,
	in addition to various methods of processing parts and designing blanks, approaches to the
	design of product assembly technology, features of technological preparation of assembly
	production and equipment, devices and tools used in assembly work.
What you can learn	- design a 3D model of the assembly product;
(learning outcomes)	- perform dimensional analysis of the assembly unit;
(rom mig our comes)	- to establish by methods of complete and incomplete interchangeability tolerances and
	limiting deviations of the linear dimensions of parts included in the assembly unit;
	- develop a drawing of the assembly unit;
	- develop a scheme and route technological process for assembling the product;
	- calculate the conditions for the formation of a compound;
	- choose a tool and device for implementing the connection;
	- normalize the technological process;
	to study the features of technological preparation of aircraft and engineering production in
	terms of designing assembly technology, in order to further independently apply the
	knowledge gained in production conditions for the correct design of assembly processes
(competence)	
Information support	Syllabus , Lecture notes, presentations, video materials
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component 11 F-Catalog

Discipline	K11.2 :: Automation of technological processes
VO level	First (bachelor's)
Course, semester	4th year 8 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	Basic knowledge of the courses "Technology of mechanical engineering", "Machine parts
the beginning of the	and basics of design", "Metrology, standardization and certification"
study	
What will be studied	familiarization with the basic concepts of automation and automatic control systems; study
	of typical elements and systems of automatic control, their parameters and characteristics,
	general principles of construction, functioning, purpose and use and familiarization with the
	methods of their analysis, synthesis and correction; familiarization with modern solutions in
	the field of automation of technological processes
Why it is	The purpose of the discipline is to form the necessary level of theoretical and practical
interesting/necessary	training of students for their competent use of knowledge of the basics of automation and
to study	automatic control systems in the development of related disciplines and in future
	professional activities, which require theoretical knowledge and practical skills in the use of
	computer engineering and computer-integrated technologies to solve applied problems in various production and technological processes.
What you can learn	to analyze technological processes and, based on its results, to compile mathematical models
(learning outcomes)	of control objects and systems of their automation; reasonably choose the technical means of
(icar ming outcomes)	automatic control systems
How can you use the	The knowledge acquired by students during the study of this discipline will be useful to
acquired knowledge	them: in further production activities and in the implementation of course and diploma
and skills	projects.
(competence)	1 5
Information support	Syllabus , Lecture notes, presentations, video materials
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component 11 F-Catalog

Discipline	K11.3 :: Equipment for automated production
VO level	First (bachelor's)
Course, semester	4th year 8 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	Basic knowledge of the courses "Technology of mechanical engineering", "Machine parts
the beginning of the	and basics of design", "Metrology, standardization and certification"
study	
What will be studied	The purpose of the discipline is to study the structures of devices and the principles of
	choosing standardized and developing simple special technological equipment, so that in the
	future independently in production conditions technically competently and effectively solve
	the problem of equipping machining operations with progressive technological equipment.
Why it is	The student will receive the knowledge to justify and choose a standard system of
interesting/necessary	technological equipment, effective in specified production conditions; develop the design of
to study	a simple special device; use standards and standards in the synthesis of equipment
	structures; assess the basing errors and ways to reduce them; create a device layout
What you can learn	basic laws of the theory of basing blanks and products in devices; rules and procedure for
(learning outcomes)	choosing technological equipment and methods of its development; methods of choosing the
	appropriate design option for equipment from a number of alternative options; methods of
	economic justification of the expediency of the selected or developed equipment design;
	master modern methods of equipment development in accordance with the set technological,
	organizational and other production tasks; knowledge of methods for assessing the
How oon you use the	permissible values of errors in the installation of blanks or products in devices
How can you use the acquired knowledge	The knowledge acquired by students during the study of this discipline will be useful to them: in further production activities and in the implementation of course and diploma
acquired knowledge and skills	projects.
(competence)	projects.
· - ·	
Information support	Syllabus , Lecture notes, presentations, video materials
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component of the 12 F-Catalog

VO level F	
	First (bachelor's)
Course, semester 4	4th year 7 semester
Volume, and 4	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
0 0	Jkrainian
teaching	
	Mechanical engineering technologies
-	General knowledge of the disciplines: Higher Mathematics, Engineering and Computer Graphics,
	Chemistry, General Physics, Theoretical Mechanics, Technology of Structural Materials, Informatics,
	Materials Science, Mechanics of Materials and Structures, Theory of Mechanisms and Machines,
	Metrology, Standardization and Certification, Technology of Mechanical Engineering.
	Fechnical and economic indicators and performance criteria. The main components and mechanisms
	of machine tools. Machine control, tools for control, diagnostics and adaptive control of machine
	ools. Purpose, layout, functionality, features of machine tool designs: lathe machines; milling and
	nultipurpose machines for processing body parts; drilling and boring machines; extended machines;
	nachines with electrophysical and electrochemical processing methods; machines for abrasive
	processing; gear processing machines for processing gears. Automatic lines; flexible production systems. Equipment for tool production. Fundamentals of metrological support of production.
	Reproduction of units of physical quantities and the transfer of their sizes. Measurement of physical
	juantities and processing of measurement results. Measuring instruments, their characteristics.
	Metrological service of the enterprise, its tasks and functions.
	A mechanical engineer should know the main types of modern metal-cutting machines and
	equipment, their designs, purpose, technological capabilities, development trends and methods of
	lesigning components. The manufacture of parts on miles requires the appropriate implementation of
	neasures for metrological support of production.
	To be able to choose the necessary equipment for the specified conditions of production, taking into
	account its technological capabilities and economic feasibility, to calculate the structural elements and
	parameters of setting up metal-cutting machines. Be able to choose the right means, methods and
n	nethods of measurement, perform calculations of measurement errors to achieve a given accuracy.
	The study of the discipline will allow to perform an analysis of the principle of operation and structures
acquired knowledge o	of components and mechanisms, which is the basis for the selection, calculation, maintenance and
and skills o	operation of machine and robotic equipment.
	As a result of studying the discipline, students receive knowledge on the design of new equipment and
	he assessment of performance indicators of existing equipment.
	The acquired knowledge will allow students to solve the problems of metrological support of machine-
	building production. Use information technology tools in the tasks of technical preparation of
	production.
	Syllabus, control tasks, textbooks, lecture presentations
Form of classes	Lectures, practical classes
Semester control P	Passed

Educational component of the 12 F-Catalog

Discipline	K12.2 :: Technological equipment in aircraft industry
VO level	First (bachelor's)
Course, semester	4th year 7 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	General knowledge of the disciplines: Higher Mathematics, Engineering and Computer
the beginning of the	Graphics, Chemistry, General Physics, Theoretical Mechanics, Technology of Structural
study	Materials, Informatics, Materials Science, Mechanics of Materials and Structures, Theory of
	Mechanisms and Machines, Metrology, Standardization and Certification, Technology of
	Mechanical Engineering.
What will be studied	Classification of machines, their characteristics and performance indicators. Forming surfaces on
	machine tools. The main components and mechanisms of machine tools. Lathe machines; milling
	machines; drilling machine tools; grinding group machines; long, pre-slicing, planing machines;
	machines with electrophysical and electrochemical processing methods;
	Machines with numerical control, automatic lines; flexible production systems. Reproduction of units
	of physical quantities and the transfer of their sizes. Measurement of physical quantities and processing
	of measurement results
XX /1,	Means of measurement and control in tool production.
Why it is	In the practical activity of an engineer, tasks constantly arise for choosing productive, reliable and
interesting/necessary	economical technological equipment, as well as means of measuring physical quantities. A mechanical engineer should know the main types of modern metal-cutting machines and equipment, their designs,
to study	purpose, technological capabilities, development trends and methods of designing components.
What you can learn	Know the classification of machines, their technical and economic indicators, molding on machine
(learning outcomes)	tools, the main components and mechanisms of metal-cutting machines, machine control. Perform an
(learning outcomes)	analysis of the layout, structural kinematic schemes, dimensions of the working space, technological
	capabilities of machines of different groups. Choose the right measuring instruments and measurement
	methods. Be able to assess the accuracy of the results obtained and, if necessary, develop ways to
	achieve a given accuracy.
How can you use the	To solve issues on the design and operation of machine equipment, including the adjustment of
acquired knowledge	machines, checking their geometric accuracy, repair and maintenance of machines. Be able to choose
and skills	equipment, tools and other means of technological equipment and automation for the implementation
(competence)	of production and technological processes. Know the principle of operation and features of the use of
	measuring instruments, methods and techniques for performing measurements and control. Develop
	and implement measures to ensure the quality of engineering products.
Information support	Syllabus, control tasks, textbooks, lecture presentations
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component of the 12 F-Catalog

Discipline	K12.3 :: Automated production equipment
VO level	First (bachelor's)
Course, semester	4th year 7 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	
the beginning of the	Basic knowledge of general and professional cycles
study	Training
What will be studied	basic information about automatic machines and their use for the manufacture of machine parts in the
	conditions of mass production, as well as about CNC machines and their capabilities in modern
	engineering using modern programming systems, tooling
Why it is	The main reason: a modern designer should have universal training, especially given the
interesting/necessary	spread of small and medium-sized businesses, in which an engineer must solve a variety of
to study	current issues that may relate to different areas of knowledge, since the number of
	administrative and technical workers in such enterprises is limited.
What you can learn	understand the principles of the structure of modern machines used for various types of
(learning outcomes)	processing; \Box To study the design features of these machines and their capabilities, which
	will allow to operate these machines with maximum productivity and quality of
	manufactured parts; Ability to understand the principles of building programming systems
	and their capabilities.
How can you use the	use reference books and computer media about the features of machines from different
acquired knowledge and skills	manufacturers; Perform a comparative analysis of various designs of automated machines
	in order to select the most progressive and economical for the implementation of a given
(competence)	technological process using reliable vehicles.
Information support	Syllabus, manuals, guidelines for laboratory / practical work, lecture notes
Form of classes	Lectures, practical classes
Semester control	Passed

Educational component 13 F-Catalog

Discipline	K13.1 :: Fundamentals of algorithmic programming of CAD
	systems
VO level	First (bachelor's)
Course, semester	4th year 8 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	
the beginning of the	General scientific knowledge of mathematics and physics courses, computer science.
study	
What will be studied	The basics of software configuration of CAD systems, the use of Autodesk Inventor API to
	create your own library modules designed to automate constructions in CAD systems will be
	studied.
Why it is	An integrated development environment in CAD systems provides an opportunity to acquire
interesting/necessary	knowledge and programming skills. And also there is an opportunity to use not only to
to study	improve the existing product tools, but also to create completely new ones. Also automate
	repetitive, time-consuming build operations in CAD systems and expand the basic
	functionality directly in the CAD program environment. API (application programming
	interface) and can be used to create your own tools and functions that connect directly to
	CAD, expanding its functionality.
What you can learn	Allows you to learn how to develop on VB.NET, C# parts of programs that the API uses.
(learning outcomes)	You will be able to libraries in CAD systems for automation of design and technological
	preparation of production
How can you use the	The course allows you to acquire knowledge and skills for an integrated development
acquired knowledge	environment in CAD systems. Allows you to create a tool for managing the visibility of
and skills	groups of assembly components in CAD. Create a new and user-friendly interface for CAD
(competence)	for the developed modules.
Information support	Syllabus, control tasks, lecture presentations
Form of classes	Syllabus, presentations of lectures, guidelines for practical work
Semester control	Passed

Educational component 13 F-Catalog

Discipline	K13.2 :: Designing Dies and Molds
VO level	First (bachelor's)
Course, semester	4th year 8 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for the beginning of the study	based on the following disciplines: Higher Mathematics; Technology of structural materials; Descriptive geometry and engineering graphics; Machine parts and design basics
What will be studied	Design of dies and molds used in the production of parts and semi-finished products by polymer casting
Why it is interesting/necessary to study	Today's challenges require a new enterprising, creative person who will be able to independently assimilate information about the design and use of designing dies and molds for polymer casting methods
What you can learn (learning outcomes)	main achievements in the field of design of dies and molds; existing technological processes for the production of parts by polymer casting methods; existing methods for solving formation problems;
How can you use the acquired knowledge and skills (competence)	use reference books and computer media; analytically and numerically present the processes of production of parts by methods of casting polymers; calculate and develop the technological process and highlight its features for the design of a stamp or mold;
Information support	Syllabus, control tasks, lecture presentations
Form of classes	Syllabus, presentations of lectures, guidelines for practical work
Semester control	Passed

Educational component 13 F-Catalog

Discipline	K13.3 :: Rapid prototyping technologies
VO level	First (bachelor's)
Course, semester	4th year 8 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	
the beginning of the	based on the following disciplines: Higher Mathematics; Technology of structural materials;
study	Descriptive geometry and engineering graphics; Machine parts and design basics
What will be studied	The main technologies of rapid prototyping of prototyping of parts and products will be
what whi be studied	studied to study their functional, aesthetic, tactile properties. Such rapid prototyping
	methods are additive manufacturing and machining technologies on CNC machines
Why it is	Modern technologies of rapid prototyping allow very quickly to obtain either a functional
interesting/necessary	object or a ready-made prototype at the stages of product development. Such objects serve
to study	for visual and tactile perception of the product, which is still at the stage of development.
v	Prototyping can significantly reduce the time and cost of developing a product and
	launching it on the market.
What you can learn	The subject of study of the discipline is the theoretical and practical foundations of rapid
(learning outcomes)	prototyping of the product, which includes basic data on:
	- creation of functional and visual prototypes;
	- selection of technology and stages of prototype;
	- 3D printing technologies used for rapid prototyping;
	- processing technologies on CNC milling machines when creating prototypes;
	- processing technologies on CNC contouring machines when creating prototypes;
	- technologies for creating prototypes from sheet material;
	- technologies for creating equipment for rapid prototyping;
	- methods and methods of proving prototypes and giving them special properties;
	- creation of CAD models of prototypes.
How can you use the	Thanks to the study of the discipline "Rapid Prototyping Technologies", it is possible to
acquired knowledge	create prototypes to assess the ergonomics, design, functionality of new products, create
and skills	special technological equipment and save significant time and money when launching a new
(competence)	product on the market both at the development stages and at the stages of production
T. C	preparation.
Information support	Syllabus, lecture presentations, guidelines for practical and laboratory work
Form of classes	Lectures, laboratory classes
Semester control	Passed

Educational component of the 14 F-Catalog

Discipline	K14.1 :: Theoretical foundations of surface formation
VO level	First (bachelor's)
Course, semester	4th year 8 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of	Ukrainian
teaching	
Pulpit	Mechanical engineering technologies
Requirements for	
the beginning of the	is based on the following disciplines: Engineering and computer graphics; Higher
study	mathematics; Theoretical mechanics; Technology of mechanical engineering
What will be studied	Theory, methods, methods for obtaining specified surfaces during machining
Why it is	You will be able to determine the output of tool surfaces that limit the working forming
interesting/necessary	surfaces of tools designed to process the specified surfaces of machine parts.
to study	- determine the conditions of formation, compliance with which ensures the processing of a
to study	given surface of the part in accordance with the drawing;
	- definition of a set of types of tools designed to process a given surface of a part.
	- get knowledge, theoretical information how in CAM systems determine the trajectory of
	the tool
What you can learn	- existing methods for determining the original tool surface, which is conjugated with the
(learning outcomes)	surface of the part;
	- existing methods for determining the treated surface of the part with known output tool
	surface and processing scheme;
	- existing methods for determining the kinematic scheme of processing by a well-known tool
	of the surface of the part.
How can you use the	- according to existing methods and algorithms to solve problems of determining possible
acquired knowledge	processes of forming a given surface of a part;
and skills	- determine the parameters of the formation process, ensuring the processing of a given
(competence)	surface in accordance with the drawing
Information support	Syllabus, lecture presentations, lecture notes, guidelines for practical work
Form of classes	Lectures, laboratory classes
Semester control	Passed

Educational component of the 14 F-Catalog

Discipline	K14.2 :: Gear manufacturing technology
VO level	First (bachelor's)
Course, semester	4th year 8 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	
Language of teaching	Ukrainian
Pulpit	Mechanical engineering technologies
Requirements for the beginning of the study	It is based on the following disciplines: Engineering and computer graphics; Higher mathematics; Technology of mechanical engineering
What will be studied	The technology of manufacturing the main elements of the gear crown, as well as the design of tools to ensure their manufacture will be studied.
Why it is	Gears are the main elements of the mechanisms for transmitting rotational motion, the
interesting/necessary	surface of the crown of the gear wheel is a complex surface of periodic shape, therefore, the
to study	formation of the working surface of the gears has always been considered separately within the framework of the general technology of mechanical engineering, and the shape of the impeller surface of the wheel depends on the shape of the tool surface and therefore within the framework of this discipline not only the technology of forming gears is considered, but also the design of the forming tool.
What you can learn (learning outcomes)	The main methods of forming gears will be studied, namely cylindrical gears, conical straight-toothed gears, bevel wheels with a circular tooth and worm gears with line worms. The main methods of designing tools for such gears will also be studied.
How can you use the	To develop the technological process of processing gears and designing tools for their
acquired knowledge	manufacture:
and skills	-cylindrical gears, processing by dental and tooth-cutting with worm cutters;
(competence)	- conical straight-toothed gears by the method of processing with incisors;
r ,	-conical wheels with a circular tooth by processing with a circular incisor head; - worm gears and features of their manufacture and design of tools for their manufacture.
Information support	Syllabus, control tasks, lecture presentations
Form of classes	Lectures, laboratory classes
Semester control	Passed

Educational component of the 14 F-Catalog

Discipline	K14.3 :: Tool production technology
VO level	First (bachelor's)
Course, semester	4th year 8 semester
Volume, and	4 ECTS credits / 120 hours. (audit 72, SRS - 48)
distribution of hours	
of classroom and	
independent work	Ukrainian
Language of	UKLAIIITAII
teaching Pulpit	Maghaniasl anginagring taghnalogias
	Mechanical engineering technologies
Requirements for	It is based on the following disciplines: Engineering and computer graphics; Higher
the beginning of the	mathematics; Technology of mechanical engineering
study	maticinaties, recimology of mechanical engineering
What will be studied	The technology of tool production will be studied, namely the main processes for the
	manufacture of cutting tools, dies and molds
Why it is	This will provide an opportunity in the formation of a set of professional knowledge, skills
interesting/necessary	and abilities necessary for practical activities associated with a reasonable choice of the
to study	sequence of processing of various types of tools, solving engineering problems based on
	technological calculations aimed at creating modern cost-effective technological processes
	within modern specialized tool industries.
What you can learn	- Features of the technology of manufacturing tools.
(learning outcomes)	- Instrumental materials and their features.
	- Selection of blanks of cutting tools.
	- Treatment of base surfaces.
	- Heat treatment of tool materials.
	- Technological options for the manufacture of prefabricated one-piece and detachable tools.
	- Procurement stage of tool manufacturing technology.
	- Basic formative technologies.
	- Technology of tooth formation tool.
	- Shaping of chip grooves.
	- Grinding operations.
	- Sharpening the tool.
	- Backlogging.
	- Improving the performance of the cutting tool.
	- Manufacturing technologies for typical die tools and molds
How can you use the	
acquired knowledge	To develop the technological process of processing cutting tools and dies and molds, to
and skills	carry out a set of measures to restore the operability of the tool – sharpening. Assign a set of
(competence)	methods to improve the performance of tools, coating, strengthening the finish, etc.
Information support	Syllabus, presentations of lectures, guidelines for practical work
Form of classes	Lectures, laboratory classes
Semester control	Passed